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Abstract.
Flash flood alerts in metropolitan France are provided by SCHAPI (Service Central Hydrométéorologique et

d’Appui à la Prévision des Inondations) through the Vigicrues Flash service, which is designed to work in ungauged
catchments. The AIGA method implemented in Vigicrues Flash is designed for flood forecasting on small- and
medium-scale watersheds. It is based on a distributed hydrological model accounting for spatial variability of the5

rainfall and the catchment properties, based on the radar rainfall observation inputs. Calibration of distributed
parameters describing these properties with high resolution is difficult, both technically (in terms of the estimation
method), and because of the identifiability issues. Indeed, the number of parameters to be calibrated is much greater
than the number of spatial locations where the discharge observations are usually available. However, the flood
propagation is a dynamic process, so observations have also a temporal dimension. This must be larger enough to10

comprise a representative set of events. In order to fully benefit from using the AIGA method, we consider its hy-
drological model (GRD) in combination with the variational estimation (data assimilation) method. In this method,
the optimal set of parameters is found by minimizing the objective function which includes the misfit between the
observed and predicted values and some additional constraints. The minimization process requires the gradient of
the cost function with respect to all control parameters, which is efficiently computed using the adjoint model. The15

variational estimation method is scalable, fast converging, and offers a convenient framework for introducing addi-
tional constraints relevant to hydrology. It can be used both for calibrating the parameters and estimating the initial
state of the hydrological system for short range forecasting (in a manner used in weather forecasting). The study area
is the Gardon d’Anduze watershed where four gauging stations are available. In numerical experiments, the benefits
of using the distributed against the uniform calibration are analysed in terms of the model predictive performance.20

Distributed calibration shows encouraging results with better model prediction at gauged and ungauged locations.
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1 Introduction

Distributed hydrological models have been introduced to take advantage of high-resolution (both in time and space)
data available nowadays, from weather radars and other remote sensing tools. These models come with distributed
parameters to better describe both catchment and rainfall spatial characteristics that significantly impact the dis-
charge modelling at low scales (Merz and Blöschl, 2009).5

In the literature, the distinction between ’conceptual’ and ’physically-based’ models is often made, even if some-
times the limit is fuzzy. Physically-based models, such as the SHE model (Abbott et al., 1986), tend to describe
local and spatial processes as precisely as possible. They involve many physical parameters, such as soil depths,
porosities, conductivities, wetting front suctions or roughness coefficients. However, their complexity and the fact
that the reality is too heterogeneous to be completely described make their application difficult for an operational10

use (Beven, 1989).
For this reason, conceptual models (lumped, semi-distributed or fully-distributed) are often preferred in hydrology.

Lumped models consider the watershed as a system which has no spatial dimension. They come with several operators
describing the spatial-average of local processes. In distributed conceptual models, the catchment is divided into sub-
units, either cells displayed on a regular grid (fully-distributed models) in order to take advantage of other gridded15

input data or sub-catchments (semi-distributed models) in order to respect the hydrological boundaries. Distributed
conceptual models can be seen as a good compromise between the detailed representation of the physically-based
models and the efficiency of the lumped models. Nowadays, many run operationally in real time, over large areas,
for forecasting purpose. Among them, we can cite the CREST model in the United-States (Wang et al., 2011) or the
G2G model in the United-Kingdom (Bell et al., 2007). Being conceptual (and not physical), their parameters must20

be calibrated. But due to the great number of cells (or sub-catchments), these models are largely over-parametrized.
This rises both technical and scientific issues, such as parameters equifinality and uncertainty (Beven, 1993).
Methods of data assimilation (DA) have been engaged for several decades in geosciences, including meteorology,

oceanography, river hydraulics and hydrology. These methods are used for estimating the driving conditions, param-
eters and states of a dynamical model describing the evolution of natural phenomena. The estimates are conditioned25

on observations (usually incomplete) of a prototype system. Some early applications of DA in hydrology are described
in the review paper of (McLaughlin, 1995). It seems that the Kalman filtering has been recently the most popular
DA method in hydrology (Sun et al., 2016). For instance, in (Quesney et al., 2000) the Extended Kalman Filter is
applied with a lumped conceptual rainfall-runoff model to estimate the soil moisture by assimilating the SAR (syn-
thetic aperture radar) data. In (Munier et al., 2014), the standard Kalman Filter is applied with the semi-distributed30

conceptual model TGR, where the discharge observations are assimilated to adjust the initial model states. It has
been shown that the predictive performance depends on the degree of ’spatialization’ of the watershed and on the
number of gauging stations engaged. In (Sun et al., 2015), the Extended Kalman filter is used with the distributed
SWAT model to improve flood prediction on the upstream Senegal river catchment. In this work, given the large
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number of state variables, only the spatially-averaged low-resolution updates are estimated. This shows that for DA
involving distributed models, scalable methods must be used. The choice of DA methods is, therefore, limited to the
variational estimation and the Ensemble Kalman Filter.
In variational estimation, one looks for the minimum of the cost-function using a gradient-based iterative process.

The cost-function itself represents the maximum a posteriori (MAP) estimator, which turns into the standard 4D-5

Var cost-function (Rabier and Courtier, 1992) under the Gaussian assumption. The key component of the method
is the adjoint model, which allows the accurate gradient of the cost-function to be computed in a single adjoint run.
Then, different minimization methods can be applied. For example, in weather/ocean forecasting, where the models
involved are computationally very expensive, the Gauss-Newton method (e.g. ’incremental approach’) is used. This
method leads to a nearest local minimum in the vicinity of the prior guess. This could be a serious problem if the10

posterior distribution is multimodal.
In hydrology, the variational estimation method as described above (i.e. including the adjoint model) has not

been reported so far. However, similar algorithms have been used. For example, (Abbaris et al., 2014) explored the
variational estimation algorithm involving the lumped conceptual HBV model in operational condition. It has been
used to update the soil moisture and the states of the routing tank reservoirs on some events. Due to a small number15

of variables, the gradient is computed by a finite-difference scheme, i.e. without the adjoint model. It has been shown
that DA helps to improve peak flow prediction, however the correct choice of the assimilation period and the forecast
horizon is vital. In (Thirel et al., 2010), the cost-function is minimized iteratively using the BLUE formulation, which
is equivalent to the ’algebraic’ form of the Gauss-Newton method. Again, the gradient is computed using the finite-
differences and the system matrix (Hessian) is explicitly formed and inverted. Here, DA is implemented involving the20

SIM model. It has been shown that the improved estimate of the moisture of the soil layers leads to a significantly
better discharge simulation.
Calibration of the model parameters is a special case of data assimilation. In hydrology, calibration is very common

since the parameters of conceptual models must be somehow defined. Certain past attempts with the local search
methods were not always successful and several authors have reported that these methods fail to deliver the global25

optimal solution (Moradkhani and Sorooshian, 2009), (Abbaspour et al., 2007). However, as we said already, for high-
dimensional problem the choice of feasible DA methods is very limited. Let us also note that for high-dimensional, but
relatively inexpensive models (such as those common in hydrology), the gradient-enhanced global search minimization
methods can be considered (Laurent et al., 2019).
An other issue in hydrology concerns flash floods forecasting. This task is very challenging since the conditions30

leading to these potentially devastating events are still difficult to anticipate (Borga et al., 2010) (Braud et al., 2016).
The HyMeX program (Hydrological Cycle in the Mediterranean Experiment) offers a good opportunity to conduct
multi-disciplinary studies on this subject (Drobinski et al., 2014). Indeed, the Mediterranean region is particularly
affected by flash floods, especially in automn, when the warm and moistured flux coming from the sea meets inland
colder conditions and/or horographic forcing.35
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In this context, this paper presents the following novel developments. First, the GRD conceptual distributed model
used in the so-called “Vigicrues Flash” French warning system (Javelle et al., 2016) is upgraded into a continuous
fully distributed model, by introducing a ’cell-to-cell’ routing scheme. Second, this new model is calibrated using
a variational estimation algorithm, including the adjoint technique for computing the gradient. This algorithm is
upgraded to include the inequality constraints and scaling. The predictive performance of the calibrated model is5

evaluated by cross validation, using the Gardon d’Anduze watershed, in the French Mediterranean region.
The paper is organised as follows. In Section 2.1 the modified GRD model is described. In Section 2.2 we present the

variational estimation algorithm adapted for the parameter calibration purpose. The testing benchmark is described
in Section 2.3, and the testing methodology in Section 2.4. The results are presented in Section 3, followed by the
discussion and conclusions sections.10

2 Methodology and data

2.1 Distributed (continuous) rainfall-runoff model GRD

The GRD model (i.e. GR ’Distributed’) is a conceptual distributed hydrological model (Javelle et al., 2010) (Arnaud
et al., 2011) (Javelle et al., 2014). It belongs to the ’GR’ (Génie Rural) family, which includes several other bucket
style models, lumped or semi-distributed, developed in the last 20 years (Perrin et al., 2003), (Mouelhi et al., 2006),15

(Lobligeois et al., 2014), (Ficchì et al., 2016), (Santos et al., 2018), (Riboust et al., 2019).
Since march 2017, the GRD model runs operationally into the national French flash flood warning system called

’Vigicrues Flash’. As described by (Javelle et al., 2016), for this operational application, GRD runs on an ’event-
based’ mode, with a very simple transfer function. Furthermore, its parameters are uniform over supposed large
homogeneous areas (nine classes in France).20

The present paper presents a new version of the GRD model: it is continuous, and cells are connected by the
means of a ’cell-to-cell’ routing scheme. From an operational point of view, these improvements have the following
advantages: 1) the model does not require anymore to be initialised before each event, and 2) forecasts can be issued
at any pixel, and not at predefined outlets as it was the case in the previous version.
The inputs are the radar precipitation estimates provided by Météo-France and the spatial potential evapotran-25

spiration computed from the Oudin formula, based on the temperature (Oudin et al., 2005). The output is the
discharge calculated at at any node (pixel) of the routing scheme. In the present case study, the model runs at an
hourly time step on a regular 1 km2 grid.
For the convenience of the reader, the elements of the model are briefly described below.
In each pixel, the model contains two reservoirs: a production store p and a transfer store t. Then the runoff30

generated in each pixel is routed from pixel to pixel (figure 1). Thus, only 3 parameters need to be defined in each
cell (pixel): the capacity of the production reservoir cp, the capacity of the transfer reservoir ct and the local routing
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velocity v.

The water balance function :
In each pixel, a water balance function determines the effective rainfall, i.e. the amount of rainfall that will produce

a runoff, noted Pr. This operation is carried out following several steps.5

First, net rainfall Pn and net potential evapotranspiration En are defined from the following equations:

ifP ≥ E, Pn = P −E , and En = 0 (1)

ifP < E, En = E−P and Pn= 0 (2)

Then, the production store is filled by Pp, a part of Pn, representing the part of rainfall infiltrating in the soil.10

In the same manner, the production store is emptied by Ep, a part of En, representing the actual evaporation. The
variation of the level hp into the store is driven by the following differential equation (Edijatno, 1991):

dhp =
[

1−
(
hp
cp

)2
]
dPn−

hp
cp

(
2− hp

cp

)
dEn (3)

Assuming a stepwise approximation of input variables P (t) and E(t), equation (3) can be integrated over one time
step ∆t to obtain the amount Pp filling the store and the amount Ep evapored from the store.15

Pp = cp

(
1−

(
hp
cp

)2
)

tanh(Pncp )

1 + (hpcp ) tanh(Pncp )
, (4)

Ep = hp

(
2− hp

cp

) tanh(Encp )

1 + (1− hp
cp

) tanh(Encp )
. (5)

It should be noted that with this discret formulation, hp is the level of the store at the begining of ∆t, Pp and Ep
are the volume of water gained or lost by the store, over ∆t. At the end of ∆t, hp will be updated by adding P (t)
and removing E(t), before moving to the next time step.20

Finally, Pr, is the remaining rainfall, i.e. the part of rainfall that is not entering into the production store. It is
noted:

Pr = Pn−Pp (6)

One can see, that the state of the production reservoir hp plays the role of the humidity state of the soil. An
empty store (hp = 0) means that the soil is completely dry: no runoff and no evapotranspiration are produced, and25
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all the rainfall is absorbed (Ep = 0, Pp = Pn, Pr = 0). On the contrary, a full store (hp = cp) means that the soil is
completely saturated: the evapotranspiration is maximal, all the rainfall contribute to the runoff and the soil reaches
its maximal absorption capacity (Ep = En, Pp = 0, Pr = Pn)

The transfer function (within a pixel) :5

Pr fills the second store of the model, a transfer store t with a ct capacity. The outflow from the transfer store gives
the elementary flow componant q (more precisely, q is a volume emitted by the reservoir during the time period ∆t).
This transformation is modeled by a conservative operator which is derived from the differential equation describing
the evolution of the state ht of the transfer reservoir and the mass conservation condition.

dht
dt

+ cth
α
t = Pr, (7)10

It has been noticed (Michel C., 1989) that equation (7) correctly replicates the flooding and drying processes for
α= 5. This is an empirical knowledge which has no physical proof. Assuming Pn is the impulse function, equation
(7) is integrated over one time step ∆t to obtain the expression for q:

q = ht− (h−4
t + c−4

t )−0.25 (8)

More details about the production and the transfer reservoirs can be found in (Perrin et al., 2003) and (Michel C.,15

1989).

The routing function (pixel-to-pixel) :
The run-off is modelled by a third operator (routing model), propagating the flow through the basin. This model

is build on top of a digital elevation model, which defines the runoff directions between the routing nodes. Presently,20

the routing nodes are placed at the center of the corresponding transfer reservoir cells. For the sake of simplicity we
describe the routing model in the one-dimensional setting. The runoff from node i−1 to node i is delayed by a time

τi = di
vi
, i= 1, . . . ,N, (9)

where di and vi are, respectively, the distance and the routing velocity between these nodes.
In the simplest implementation, the node output discharge (more precisely, the mass over the time step ∆t) is25

given as

Qi(t) = qi(t) +Qi−1(t− τi(vi)), i= 1, . . . ,N. (10)

Since no explicit model for Q is provided, Q is not explicitly differentiable with respect to v. That is why the above
formulation is not suitable for variational data assimilation, which requires the gradient of the cost function has to
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be computed. In order to achieve the differentiability we represent the second term in equation (10) in the integral
form as follows

Qi−1(t− τi(vi)) =
t∫

t′=−∞

Qi−1(t′)δ(t′− τi(vi))dt′. (11)

Next, instead of δ-function we use the unscaled Gaussian function, i.e.

Qi−1(t− τi(vi)) =
t∫

t′=−∞

Qi−1(t′)ω(t′− di
vi
, σ)dt′, (12)5

where

ω(t,σ) = exp(− t2

2σ2 ). (13)

It is easy to see that function (12) explicitly depends on vi via ω, therefore the gradient of Qi−1 with respect to vi
can be computed. Assuming Q(t) is a constant during a time step period ∆t, equation (12) can be written in the
discrete form as follows:10

Qi−1(t− di
vi

) =
K∑

k=0
β̄i,kQi−1(t− k∆t), (14)

where

β̄i,k = βi,k∑K
k=1βi,k

,

and

βi,k = w(t− di
vi
− k∆t,σ), i= 1, . . . ,N, k = 1, . . . ,K.15

For the given estimate of routing velocities vi, the coefficients βi,k does not change with time and, therefore,
can be pre-computed and saved in memory. In order to avoid instability the spread parameter σ = 0.5 is used
in computations. In terms of using the exponential weights the presented routing model resembles the Lag and
Route (LR) model described in (Laganier et al., 2014) and (Tramblay et al., 2010). However, the Gaussian function
represents the hydraulic response function in a more realistic way (without the initial shock). Besides, unlike our20

routing model, the mentioned models employ the direct ’cell-to-output’ routing, in which case the discharge at the
’ungauged’ parts of the basin cannot be estimated.

2.2 Variational calibration algorithm

Calibrating a distributed model is often difficult due to a number of reasons. First, the total number of sought
parameters can be quite large (high dimensionality). This strictly limits the choice of suitable inference method-25

ologies. Second, there is an identifiability issue given the sparsity of observations in space. This can be (partially)

7
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Delay Γ

Figure 1. General outlines of the GRD model.

compensated by increasing the observation period or observation frequency to better analyze the system dynamics.
However, running the model over a very long assimilation window can also be quite costly.

For distributed models the variational estimation algorithm is often a natural choice. It is perfectly scalable, i.e.
it works efficiently for practically unlimited size of the control vector. That is why this method (branded as 4D-5

Var) is commonly used in meteorology and oceanography for operational forecasting and reanalysis (Ledimet and
Talagrand, 1986), (Rabier and Courtier, 1992). The method provides the exact mode of the posterior distribution by
minimising the cost-function defined over the full observation window. The key element of the method is the adjoint
model which provides the precise gradient of the cost-function with respect to all elements of the control vector in a
single run (Errico, 1997). This allows the efficient, fast converging gradient-based minimization methods to be used,10

such as the BFGS or Newton-type. Quite often, the need for development of the adjoint model becomes an obstacle
for practical implementation of this method. Heuristic methods such as the Nelder-Mead algorithm do not require
the gradient to evaluate the descent directions, but converge slowly and are not suitable for solving problems in
high dimensions. The same is true as for the general purpose statistical methods such as the Markov Chain Monte
Carlo (e.g. Metropolis-Hastings algorithm), so for the methods specially designed for hydrology applications,such as15

SUFI-2 (Abbaspour et al., 2007).
Let us consider a 2D-spatial domain (basin) Ω. Let us represent the hydrological model, described in Section

2.1, as an operator A mapping the inputs P (x,t) and E(x,t) into the discharge Qk(t) at the observation points

8
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xk ∈ Ω, k = 1,Ns:

Qk(t) =A(P (x,t),E(x,t),h(x,0),p(x)), x ∈ Ω, t ∈ (0,T ), k = 1,Ns, (15)

where h(x) = (hp(x),hr(x))T is the state vector which includes the states of all production and transfer reservoirs
at time t= 0, and p(x) = (cp(x), cr(x),v(x))T is the parameter vector which includes the corresponding capacities
and the routing velocities at all routing nodes. If the observation period is much longer than the characteristic time5

of the system (which is the case for calibration/re-analysis), one can use the trivial initial state h(x,0) = 0, but
consider the observation window t ∈ (t∗,T ), where t∗ is the relaxation period. Given the observed inputs P ∗(x,t)
and E∗(x,t) and the output Q∗k(t), the calibration cost-function can be defined as follows:

J(p) =
T∫

t=t∗

Ns∑

k=1
O−1/2 (A(P ∗,E∗,0,p)−Q∗k)2

dt+α‖B−1/2(p− p∗)‖2
L2 , (16)

where O is the observation error covariance, B is the background error covariance, p∗ is a prior guess on p, which10

comes from special measurements, land expertise or a modeling, and α is the regularization parameter. This is more
or less standard variational data assimilation (4D-Var) cost-function. The weight α is additionally introduced to
mitigate the uncertainty in p∗ and B.

Let us note that for the short-range forecasting (T comparable to the characteristic time of the system), the
parameter vector is likely to be fixed at its optimal value pa and the initial state of reservoirs h= h(x,0) will serve15

as a control vector. In this case, the cost-function looks as follows:

J(h) =
T∫

t=0

Ns∑

k=1
O−1/2 (A(P ∗,E∗,h,pa)−Q∗k)2

dt+α‖B−1/2(h−h∗)‖2
L2 , (17)

where h∗ is the background value of h. However, this paper is focused on the parameter calibration problem involving
long time series of observations, thus formulation (16) is considered.
We use additional constraints in the form20

pmin < p < pmax, (18)

where pmin and pmax are the bounds which come from the empirical knowledge or physical considerations. Thus,
the optimal estimate of the parameters pa is obtained from the condition

pa = argmin
p

J(p), (19)

given constraints (15) and (18).25

Matrix B can be represented in the form B = σp ·I C σp ·I, where σp is the vector of mean deviations of p, C is the
correlation matrix, I - the identity matrix, and ’·’ stands for the elementwise (Hadamar) product. Next, the scaling

9

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



of parameters is introduced, such that p= pmin + p̃(pmax− pmin). Then, the penalty term in (16) takes the form

α‖(pmax− pmin) ·σ−1
p · I C−1/2(p̃− p̃∗)‖2

L2 .

Assuming that (pmax− pmin) ·σ−1
p = const, the cost-function (16) reads as follows:

J(p̃) =
∫

t=t∗

T

Ns∑

k=1
O−1/2 (A(P ∗,E∗,0,p)−Q∗k)2

dt+α‖C−1/2(p̃− p̃∗)‖2
L2 , (20)

given5

p= pmin + p̃(pmax− pmin), 0< p̃ < 1. (21)

The results presented in this paper correspond to the simplest approach to regularization: we assume that O = I,
C = I, and the regularization parameter is chosen a-priori as a small value (α= 10−4) to insure well-posedness of the
calibration problem. More sophisticated approaches for regularization (non-trivial correlation matrix C, a-posteriori
choice of α using the L-curve approach) have been tried (Jay-Allemand et al., 2018), but not presented in this paper10

for the sake of simplicity.
Minimization of (20) given constraints (21) is performed by LBFGS-B (Limited memory Broyden-Fletcher-

Goldfarb-Shanno Bound-constrained (Zhu et al., 1994)). The minimization process can be written in the form

p̃i+1 = p̃i +βH−1(pi)P [J ′p̃(pi)], i= 0,1, . . . , p̃0 = p̃∗, (22)15

where J ′(pi) and H−1(pi) are the gradient (with respect to p̃) and the limited-memory inverse Hessian of (20) at
point pi, respectively, i is the iteration number, and P is the gradient projection operator to account for the box
constraints. Let us note that H−1(pi) is directly computed inside the minimisation algorithm in such a way that its
norm is always bounded. This serves as an additional regularization, thus the solution pa is always bounded, even
for α= 0 in (20), i.e. even without the penalty term. The gradient J ′(pi) is obtained by solving the adjoint model.20

This model has been generated by the Automatic Differentiation engine Tapenade (Hascoet and Pascual, 2013),
then manually optimised and, finally, verified using the standard gradient test.
The background value p∗ is used both as a starting point for iterations and in the penalty term. Given the fact that

the information content of the test signal (rainfall) and observations (discharge) may not be sufficient to uniquely
resolve the distributed coefficients, evaluating an appropriate p∗ becomes an important issue.25

Let us consider an approximation: cp(x) = c̄p, cr(x) = c̄r, v(x) = v̄, ∀x ∈ Ω. In this case, which shall be referred
below as ’uniform calibration’, the control vector p̄= (c̄p, c̄r, v̄)T consists just of three elements. For such low-
dimensional control estimating the global optimal solution, as well as the error bounds, is feasible by a variety of
methods. We use a stochastic method to calibrate uniformly these parameters to ensure finding the best solution
in a global sense. The purpose of calibrating cp(x), cr(x), v(x), ∀x ∈ Ω is to allow the spatial variability of these30

10
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coefficients. This shall be referred below as ’distributed calibration’, the control vector p= (cp(x), cr(x),v(x))T

consists of 3×N elements. It must be mentioned that since the model A(·) is nonlinear the solution obtained by
(22) may not be the best possible solution in a global sense.
Finally, the stability of the calibrated set of parameters is checked by comparing the optimal solutions which are

obtained by running the minimisation process with randomly perturbed p∗.5

2.3 Study area

A French Mediterranean watershed, the Gardon of Anduze, has been considered for testing our model and calibra-
tion algorithm. This area has been involved in many hydrological studies made in the framework of the HYMEX
(Drobinski et al., 2014), which aims to better understand the flash floods dynamic in Mediterranean areas. For in-
stance, the FLOODSCALE project (Braud et al., 2014) enabled researchers to exploit a number of very detailed field10

measurements during severe storm events. Other studies involved a physically based distributed model (MARINE)
in order (Roux et al., 2011), (Garambois et al., 2013), (Garambois et al., 2015), (Douinot et al., 2016), (Douinot
et al., 2018).Other conceptual distributed models were also tested in this area, such as those implemented into the
ATHYS platform (Bouvier and DelClaux, 1996), (Laganier et al., 2014), (Tramblay et al., 2010).
The main properties of the Gardon d’Anduze are described in (Darras, 2015). In brief, this is a steep mountainous15

watershed with a dense hydrographic network spreading over 540 km2 in the East part of the Cévennes mountain
(France). The difference in levels between the highest elevation point and Anduze is about 800 meters and the slope
reaches 50% in the upstream part. Metamorphic but fractured geological formation dominates the watershed. The
ground thickness is about 30 cm in average. Water infiltrates very quickly (the saturated hydraulic conductivity
is greeter than 200 mm.h−1) and the water circulation appends mainly underground. This area is governed by a20

transitional Mediterranean-Oceanic climate with warm and dry summers, alleviated by the oceanic influence, followed
by recurrent short, intense but persistent heavy rainfalls in autumn and winter, known as "épisode méditerranéen",
which generate flash floods. This watershed is well gauged: at least four stations with continuous data collection are
operational here (see Fig.2 and Table 1). For numerical experiments, the discharge data have been extracted from
the HYDRO French database (http://www.hydro.eaufrance.fr/), and the rainfall data - from the radar observations25

analysis provided by Météo-France for the period 2008-2015.

2.4 Testing methodology

The variational algorithm described in Sect. 2.2 is applied to the hydrological model presented in Sect. 2.1, using the
Gardon d’Anduze watershed as a benchmark. The problem is considered in the rectangular spatial domain (total
area 1600km2) overlapping the watershed. The domain is covered by a uniform 1km× 1km rectangular grid. The30

number of ’active’ cells is about 540, so the total number of parameters to be calibrated is 3×540. Let us note that
the Gardon d’Anduze watershed can be regarded as a small one. The rainfall and discharge data are available for
the seven-year long period from 01/01/2008 to 01/01/2015.
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Figure 2. The Gardon watershed at Anduze: hydrographic network (blue) and gauging stations V7124015, V7124010,
V7135017, V7144010 (red).

Table 1. Characteristics of the four gauging stations on the Gardon watershed.

Rivers and station names Codes Surfaces (km2)

The Gardon de Mialet at Mialet V7124015 219.7

The Gardon de Mialet at Générargues V7124010 244.1

The Gardon de Saint-Jean at Saint-Jean-du-Gard V7135017 157.7

The Gardon d’Anduze at Anduze V7144010 540.8

The calibrated model validation step consists in checking the model predictive performance over the data not
involved in calibration. That is, the full set of observations Q∗k(t), k = 1, . . . ,Ns, t ∈ (0,T ) is divided in two comple-
mentary subsets: calibration subset and validation subset. Since Q∗ depends on k (defines the spatial distribution of
sensors) and t we distinguish the temporal, spatial, and spatio-temporal validation. In particular, we divide the whole
period in two parts: P1 - from 01/01/2012 to 01/01/2015, and P2 - from 01/01/2009 to 01/01/2012. Each period5

P1 and P2 can be considered as calibration or validation period. A model warm-up of one year long is performed
before starting the simulations. Four gauging stations are located in the watershed (2):Anduze, Générargues, Mialet
and Saint-Jean. If data from a station is used in calibration, the corresponding catchment is called the "calibration
catchment", otherwise it is call the "validation catchment".
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The calibration quality and the model predictive performance are measured using the Nash-Sutcliffe (NS) criteria
((Nash and Sutcliffe, 1970)). We shall refer to:
a) "calibration" - if the NS criteria has been computed over the calibration period for all calibration catchments;
b) "temporal validation" - if the NS criteria is computed over the validation period for all calibration catchments;
c) "spatial validation" - if the NS criteria is computed over the calibration period for all validation catchments;5

d) "spatio-temporal validation" - if the NS criteria is computed over the validation period for all validation
catchments.
The following numerical experiments have been performed:

1. calibration uniform-4-sta / calibration distributed-4-sta - uniform and distributed calibration, respectively,
using observations from all four gauging stations and two time periods P1 or P2;10

2. temporal validation uniform-4-sta / temporal validation distributed-4-sta - uniform and distributed
validation, respectively, using observations from all four gauging stations. The model calibrated on data from P1 is
validated on data from P2, and vice versa;
3. calibration uniform-1-sta / calibration distributed-1-sta - uniform and distributed calibration, respectively,
using observations from one downstream gauge station (Anduze), time periods P1 or P2;15

4. spatial validation uniform-1-sta / spatial validation distributed-1-sta - uniform and distributed spatial
validation, respectively. The model calibrated on data from Anduze gauge station, validated on data from Générar-
gues, Mialet and Saint-Jean gauge stations, for the same time periods P1 or P2;
5. spatio-temporal validation uniform-1-sta / spatio-temporal validation distributed-1-sta - uniform and
distributed spatio-temporal validation, respectively. The model calibrated on data from Anduze gauge station, vali-20

dated on data from Générargues, Mialet and Saint-Jean gauge stations, but for different time periods: e.g calibrated
on P1, validated on P2, and vice-versa.

The major purpose of the experiments is to compare the predictive performance of the models based on "dis-
tributed calibration" against those based on "uniform calibration". First, we compare the models ability to predict25

the discharge at observation points (experiments 1,2); then the ability to resolve the spatial distribution of discharge,
i.e. outside the observation points (experiments 3,4) and, finally, the stability of predictions in spatio-temporal di-
mension (experiment 5).

3 Results

Fig.3 shows the results of calibration (exp.1) and temporal validation (exp.2). The left panel shows the results30

associated with the uniform calibration, the right panel - with the distributed calibration. When calibration is
performed for the period P1, the results are validated for the period P2, and vise versa. All four gauging are
involved, thus we have 4×2 calibration / validation points. The NS criteria is computed at these points and ranked
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in the increasing value order. By comparing the calibration results (shown by “+”) presented at these two panels
one can see that the distributed calibration allows much better approximation of the observed discharge than the
uniform one. This result is anticipated and simply confirms that the data assimilation procedure works correctly.
We also notice that the distributed calibration is less "stable" than the uniform calibration. Indeed, performances
gaps between calibration and validation are larger with the distributed set of parameters. More importantly, the5

validation results (shown by “×”) confirm that the model temporal predictive performance is noticeably better if
the distributed calibration (red) is used. For convenience, the validation results are also presented in Fig.4 (left). Let
us notice that the latter result has been attained despite the rainfall patterns for P1 and P2 being quite different
(P1 covers ’wet years’, and P2 - ’dry years’).
Fig.4(right) shows the results of spatial validation (exp.4). Only data from the downstream gauging station10

(Anduze) is used for calibration (exp.3). In terms of the NS criteria the calibration results are as follows: uniform -
0.77/0.80, distributed - 0.89/0.93, for P1/P2 respectively. Data from the remaining three gauge stations are used for
validation, thus we have 3× 2 validation points shown in the figure by “O”(to distinguish from temporal validation
results). One can see that the model spatial predictive performance is also better if the distributed calibration (red)
is used, with one exception. We have to notice here that the spatial predictive performance seems less significant15

that the temporal one. This depends, however, on the spatial variability of the test signal (rainfall). Since the basin
under investigation is relatively small, this result is not surprising.
Fig.5 shows the results of spatio-temporal validation (exp.5). As before, only data from the downstream gauging

station (Anduze) is used for calibration (exp.3), but data from all four gauge stations from a different time period
is used for validation, giving 4×2 validation points. Two of them (shown in “×”)) replicate the temporal validation20

from Fig.4(left), other six (shown in “⊗”)) stand for spatio-temporal validation. One can see that the spatio-temporal
predictive performance is, again, better if the distributed calibration (red) is used (for seven out of eight points).
Fig.6 and Fig.7 represent the maps of calibrated parameters related to experiments 1 and 3, respectively. Com-

paring the left and right panels, which correspond to different time periods P1 and P2, one can notice a significant
inconsistency between the calibrated parameters for capacities Cp and Ct. This effect can be attributed to quite a25

different rainfall pattern over the reference periods. Besides, the successful estimation of the distributed parameters
depends on the information content of the test signal. If this content is not sufficient, one could get the uniqueness
issue (equifinality). As a possible remedy one may consider the idea of a pooled analysis, i.e. calibrating the model
independently for different hydrological regimes (dry, medium and wet). It is interesting to see that, regarding the
routing velocity v, the maps are rather similar and are related to the network drainage (see Fig.2).30

4 Discussion

The validation results presented above generally confirm that the distributed calibration improves the temporal,
spatial, and spatio-temporal predictive performance of the GRD model as compared to the uniform calibration. For
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Figure 3. Distribution of the NS criteria in calibration (exp.1) and in the corresponding temporal validation (exp.2): left -
uniform-4-sta, right - distributed-4-sta.
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Figure 4. Distribution of the NS criteria: left - temporal validation (exp.2), right - spatial validation (exp.4).

a chosen observation period and the associated test signal (rainfall) one can get a relatively stable set of calibrated
parameters. However, for very different test signals (i.e. those coming from different populations) the calibrated sets
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Figure 5. Distribution of the NS criteria in spatio-temporal validation (exp.5).

Table 2. Optimal uniform set of parameters for experiment uniform-4-sta.

Parameters Period P1 Period P2

cp (mm) 1000 1000
ct (mm.s0.25) 1215.7 1565.2
v (m.s−1) 5 5

are also quite different, fully or partly. This clearly indicates a structural deficiency of the chosen model, which is
not surprising since the model is conceptual.
First, the involved routing scheme may not describe properly the hydraulic properties of the basin. This poor

hydraulic behaviour can be partially compensated by the others model parameters during the calibration process,
which may explain the extreme (equal to the upper bound) parameter values. Second, the hydrological modelling at5

the cell scale is very primitive. For instance, ground water lost, lateral exchange and Horton run-off are not modelled.
The estimated velocity fields plotted in Fig.6 and Fig.7 remain similar for different experiments. Looking at

the hydrographic network in Fig.2, one can see that the velocities are much higher along the main drains than
on the side slopes. This result is in agreement with the true physical behaviour of the system, even though the
routing scheme is conceptual. However, some unnatural phenomena can also be noticed. For example, upstream the10

Mialet station (north-west part of the right watershed), both the production and transfert capacities heat the upper
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Table 3. Optimal uniform set of parameters for experiment uniform-1-sta.

Parameters Period P1 Period P2

cp (mm) 1000 1000
ct (mm.s0.25) 1033.9 1625.8
v (m.s−1) 5 5

bounds and the velocities become very low along the drain. At Mialet and Générargue stations, peak discharges
are often underestimated. At Anduze station, the model performance remains very good and the total discharges
are compensated by the Gardon of Saint-Jean where discharges are often over-estimated during the flood (lower
capacities). This bad upstream modeling is related to equifinality. To improve calibration quality, the velocities have
to be constrained according to the cumulative surfaces.5

5 Conclusions

In this study, the distributed hydrological model GRD is generalized by using the "cell-to-cell" routing scheme. Since
the model includes a high-dimensional set of distributed parameters, the variational method has been developed for
its calibration. To the best of our knowledge, this is the first time when the variational estimation involving the adjoint
sensitivities has been applied in the field of hydrology. The main question has been whether or not one can benefit10

from allowing spatial variability of model parameters to improve the model’s temporal, spatial and spatio-temporal
predictive performance. The model and the calibration algorithm have been tested using data sets available for the
Gardon d’Anduze, producing some encouraging results. For a given data record, the calibration algorithm retrieves
a relatively stable set of distributed parameters which improves the model predictive performance. The temporal
validation has demonstrated the usefulness of the spatial calibration for discharge prediction in gauged locations,15

and the spatial and spatio-temporal validation - that the discharge prediction can be improved inside the watershed
in ungauged locations/sub-catchments. Thus, the algorithm emulates a downscaling process which is of a great
interest for modelling the hydrological processes. The utility of the fully distributed hydrological models (combined
with the variational calibration) needs to be further investigated by considering a selection of different watersheds
and observation records. The immediate algorithmic developments include improvement of the routing scheme,20

implementation of constraints within the iterative regularization approach (to tackle the uniqueness/equifinality
issues), and considering the pooled analysis.

Code availability. Our research code is hosted on the IRSTEA Gitlab at https://gitlab.irstea.fr/aiga/GRDv2.git.

17

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Competing interests. The authors declare that there are no competing interests.

Acknowledgements. This PhD work has been funded by the french "Agence Nationale pour la recherche" (ANR), in the
framework of the PICS project "Prévision immédiate intégrée des impacts des crues soudaines". It also contributes to the
2010-2020 HyMeX (Hydrological Cycle in the Mediterranean Experiment) program.

18

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



References

Abbaris, A., Dakhlaoui, H., Thiria, S., and Bargaoui, Z.: Variational data assimilation with the YAO platform for hydrological
forecasting, Proceedings of the International Association of Hydrological Sciences, Volume 364, 2014, pp.3-8, 364, 3–8,
https://doi.org/10.5194/piahs-364-3-2014, 2014.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling5
hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333, 413–430,
2007.

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’connell, P. E., and Rasmussen, J.: An introduction to the European Hydro-
logical System—Systeme Hydrologique Europeen,“SHE”, 2: Structure of a physically-based, distributed modelling system,
Journal of hydrology, 87, 61–77, 1986.10

Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle, P.: Sensitivity of hydrological models to uncertainty in rainfall
input, Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56, 397–410, 2011.

Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model
for use with regional climate model output, Hydrology and Earth System Sciences Discussions, 11, 532–549, https://hal.
archives-ouvertes.fr/hal-00305636, 2007.15

Beven, K.: Changing ideas in hydrology - The case of physically-based models, Journal of Hydrology, 105, 157–172,
https://doi.org/10.1016/0022-1694(89)90101-7, 1989.

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Advances in Water Resources, 16, 41–51,
1993.

Borga, M., Anagnostou, E. N., Blöschl, G., and Creutin, J. D.: Flash floods: Observations and analysis of hydro-meteorological20
controls, Journal of Hydrology, 394, 1–3, 2010.

Bouvier, C. and DelClaux, F.: ATHYS: a hydrological environment for spatial modelling and coupling with GIS, IAHS
Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 235, 19–28, 1996.

Braud, I., Ayral, P.-A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.-P., Anquetin, S., Adamovic,
M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon-Lescot, J.-F., Domergue, J.-25
M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R.,
Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.-L., Taupin, J.-D., Vannier, O., Vincendon, B.,
and Wijbrans, A.: Multi-scale hydrometeorological observation and modelling for flash flood understanding, Hydrology and
Earth System Sciences, 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://www.hydrol-earth-syst-sci.net/
18/3733/2014/, 2014.30

Braud, I., Borga, M., Gourley, J., Hurlimann Ziegler, M., Zappa, M., and Gallart, F.: Flash floods, hydro-geomorphic response
and risk management, Journal of hydrology, 541, 1–5, 2016.

Darras, T.: Flash flood forecasting by statistical learning, Ph.D. thesis, Université Montpellier, https://tel.archives-ouvertes.
fr/tel-01816929, 2015.

Douinot, A., Roux, H., Garambois, P.-A., Larnier, K., Labat, D., and Dartus, D.: Accounting for rainfall systematic spatial35
variability in flash flood forecasting, Journal of Hydrology, 541, 359–370, 2016.

19

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Douinot, A., Roux, H., Garambois, P.-A., and Dartus, D.: Using a multi-hypothesis framework to improve the understanding
of flow dynamics during flash floods, Hydrology and Earth System Sciences, 22, 5317–5340, 2018.

Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu,
G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V., Ivančan-Picek, B., Kottmeier, C.,
Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R.,5
Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A
10-Year Multidisciplinary Program on the Mediterranean Water Cycle, Bulletin of the American Meteorological Society,
95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014.

Edijatno: Mise au point d’un modèle élémentaire pluie-débit au pas de temps journalier, Ph.D. thesis, Université Louis Pasteur,
ENGEES, Cemagref Antony, France, 1991.10

Errico, R. M.: What is an adjoint model?, Bulletin of the American Meteorological Society, 78, 2577–2591, 1997.
Ficchì, A., Perrin, C., and Andréassian, V.: Impact of temporal resolution of inputs on hydrologi-

cal model performance: An analysis based on 2400 flood events, Journal of Hydrology, 538, 454–470,
https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.04.016, http://www.sciencedirect.com/science/article/pii/
S0022169416301974, 2016.15

Garambois, P.-A., Roux, H., Larnier, K., Castaings, W., and Dartus, D.: Characterization of process-oriented hydrologic
model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments, Hydrology and Earth
System Sciences, 17, 2305–2322, 2013.

Garambois, P.-A., Roux, H., Larnier, K., Labat, D., and Dartus, D.: Parameter regionalization for a process-oriented dis-
tributed model dedicated to flash floods, Journal of Hydrology, 525, 383–399, 2015.20

Hascoet, L. and Pascual, V.: The Tapenade Automatic Differentiation tool: principles, model, and specification, ACM Trans-
actions on Mathematical Software (TOMS), 39, 20, 2013.

Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J.: Flash flood warning at ungauged locations using radar rainfall and
antecedent soil moisture estimations, Journal of Hydrology, 394, 267–274, 2010.

Javelle, P., Demargne, J., Defrance, D., Pansu, J., and Arnaud, P.: Evaluating flash-flood warnings at ungauged locations25
using post-event surveys: a case study with the AIGA warning system, Hydrological sciences journal, 59, 1390–1402, 2014.

Javelle, P., Organde, D., Demargne, J., Saint-Martin, C., de Saint-Aubin, C., Garandeau, L., and Janet, B.: Setting up a French
national flash flood warning system for ungauged catchments based on the AIGA method, in: 3rd European Conference on
Flood Risk Management FLOODrisk 2016, vol. 7, p. 11, 2016.

Jay-Allemand, M., Gejadze, I., Javelle, P., Organde, D., Fine, J.-A., Patrick, A., and Malaterre, P.-O.: Assimilation de données30
appliquée à un modèle pluie-débit distribué pour la prévision des crues, in: De la prévision des crues à la gestion de crise,
Société hydaulique de France, Avignon, 2018.

Laganier, O., Ayral, P. A., Salze, D., and Sauvagnargues, S.: A coupling of hydrologic and hydraulic models appropriate for
the fast floods of the Gardon River basin (France), Natural Hazards and Earth System Sciences, 14, 2899–2920, 2014.

Laurent, L., Le Riche, R., Soulier, B., and Boucard, P.-A.: An Overview of Gradient-Enhanced Metamodels with Applications,35
Archives of Computational Methods in Engineering, 26, 61–106, 2019.

20

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Ledimet, F. and Talagrand, O.: Variational Algorithms For Analysis And Assimilation Of Meteorological
Observations - Theoretical Aspects, Tellus Series A-Dynamic Meteorology And Oceanography, 38, 97–110,
https://doi.org/10.3402/tellusa.v38i2.11706, 1986.

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall
information improve streamflow simulation? An evaluation using 3620 flood events, Hydrology and Earth System Sciences,5
Volume 18, Issue 2, 2014, pp.575-594, 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.

McLaughlin, D.: Recent developments in hydrologic data assimilation, Reviews of Geophysics, 33, 977–984, 1995.
Merz, R. and Blöschl, G.: A regional analysis of event runoff coefficients with respect to climate and catchment characteristics

in Austria, Water Resources Research, 45, 2009.
Michel C., Maihol J.C., L. T.: Hydrologie appliquée, Tech. rep., Cemagref, 1989.10
Moradkhani, H. and Sorooshian, S.: General review of rainfall-runoff modeling: model calibration, data assimilation, and

uncertainty analysis, in: Hydrological modelling and the water cycle, pp. 1–24, Springer, 2009.
Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Linking stream flow to rainfall at the annual time step: the Manabe

bucket model revisited, Journal of hydrology, 328, 283–296, 2006.
Munier, S., Litrico, X., Belaud, G., and Perrin, C.: Assimilation of discharge data into semidistributed catchment models for15

short-term flow forecasting: Case study of the Seine River basin, Journal of Hydrologic Engineering, 20, 05014 021, 2014.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models. Part I. A conceptual models discussion of

principles., Journal of Hydrology, 10, 282–290, 1970.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential evapotran-

spiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration20
model for rainfall–runoff modelling, Journal of hydrology, 303, 290–306, 2005.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of
Hydrology, Volume 279, Issue 1, p. 275-289., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Quesney, A., Francois, C., Ottle, C., Hegarat, S., Loumagne, C., Normand, M., et al.: Sequential assimilation of SAR/ERS
data in a lumped rainfall-runoff model with an extended Kalman filter, IAHS-AISH PUBL., pp. 495–497, 2000.25

Rabier, F. and Courtier, P.: Four-dimensional assimilation in the presence of baroclinic instability, Quart. J. Roy. Meteorol.
Soc., 118, 649–672, 1992.

Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.: Revisiting a Simple Degree-Day Model for Integrating Satellite Data:
Implementation of Swe-Sca Hystereses, Journal of Hydrology and Hydromechanics, 67, 70–81, 2019.

Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J., and Dartus, D.: A physically-based parsimonious30
hydrological model for flash floods in Mediterranean catchments, Natural Hazards and Earth System Science, Volume 11,
Issue 9, 2011, pp.2567-2582, 11, 2567–2582, https://doi.org/10.5194/nhess-11-2567-2011, 2011.

Santos, L., Thirel, G., and Perrin, C.: Continuous state-space representation of a bucket-type rainfall-runoff model: a case
study with the GR4 model using state-space GR4 (version 1.0), Geoscientific Model Development, 11, 1591–1605, 2018.

Sun, L., Nistor, I., and Seidou, O.: Streamflow data assimilation in SWAT model using Extended Kalman Filter, Journal of35
Hydrology, 531, 671–684, 2015.

Sun, L., Seidou, O., Nistor, I., and Liu, K.: Review of the Kalman-type hydrological data assimilation, Hydrological Sciences
Journal, 61, 2348–2366, 2016.

21

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Thirel, G., Martin, E., Mahfouf, J. F., Massart, S., Ricci, S., and Habets, F.: A past discharges assimilation system for
ensemble streamflow forecasts over France–Part 1: Description and validation of the assimilation system, Hydrology and
Earth System Sciences, 14, 1623–1637, 2010.

Tramblay, Y., Bouvier, C., Crespy, A., and Marchandise, A.: Improvement of flash flood modelling using spatial patterns of
rainfall: A case study in southern France, in: Sixth World FRIEND Conference, pp. 172–178, 2010.5

Wang, J., Hong, Y., Li, L., Gourley, J. J., Khan, S. I., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., et al.:
The coupled routing and excess storage (CREST) distributed hydrological model, Hydrological sciences journal, 56, 84–98,
2011.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: L-BFGS-B: a limited memory FORTRAN code for solving bound constrained
optimization problems, EECS Department, Northwestern University, Evanston, IL, Technical Report No. NAM-11, 1994.10

22

https://doi.org/10.5194/hess-2019-331
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



distributed-4-sta P1
 Param CP

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 200

 400

 600

 800

 1000

Param Ct

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 2000

 4000

 6000

 8000

 10000

Param v

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 1

 2

 3

 4

 5

distributed-4-sta P2
 Param CP

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 200

 400

 600

 800

 1000

Param Ct

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 2000

 4000

 6000

 8000

 10000

Param v

 7
0

0

 7
0

5

 7
1

0

 7
1

5

 7
2

0

 7
2

5

 7
3

0

 7
3

5

X coordinates (Km)

 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925

Y
 c

o
o
rd

in
a
te

s 
(K

m
)

 0

 1

 2

 3

 4

 5

Figure 6. Maps of the calibrated coefficients (exp.1 - 4-sta): left - data from P1, right - data from P2.
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Figure 7. Maps of the calibrated coefficients (exp.3 - 1-sta): left - data from P1, right - data from P2.
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